Pipelining

- Pipeline registers are added to reduce the critical path delay of a combinational cloud.

- Example
 - A combinational logic is pipelined with three levels of pipelining stages with two sets of pipeline registers.
Pipelining & Retiming

- Pipelining & Retiming
 Retiming is a mapping from a given DFG, G to a retimed DFT, G_r such that the corresponding transfer function of G and G_r only differ by a pure delay z^{-L}

- Purposes
 - To facilitate pipelining
 - To reduce clock cycle time
 - To reduce number of registers needed.
Feed-forward Cut-set & Pipelining

- Feed forward cut-set
- Pipeline registers added on each edge of the cut-set
Pipelining using Feed-forward Cut-set

- Two candidate cut-sets in the DFG implementing a 5-coefficient FIR filter.
- One level of pipelining registers added using cut-set 2
Cut-set Retiming

- It involves transferring a number of delays from edges of the same direction across a cut set line of a DFG to all edges of opposing direction across the same line.
Cut-set Retiming: DF to TDF

- A 4-coefficient FIR filter in DF.
- Reversing the direction of additions in the DF and applying cut-set retiming.
- The retimed filter in TDF
Delay Transfer Theorem

- Without affecting the transfer function of the system, N registers can be transferred from each incoming edge of a node of a DFG to all outgoing edges of the same node,
Node Transfer Theorem

- Delay transfer theorem moves one register each from outgoing edges to incoming edges across N_0
Pipelining using cut-set

- Apply valid cut-set and add pipeline registers and then retiming them if required
A cut-set to pipeline a 4-bit RCA
Placing pipeline registers along the cut-set line
Three cut-sets for adding four pipeline stages in a 4-bit RCA
Four-stage pipelined 4-bit RCA
Following good design practice by lining up of different pipeline stages
Pipelining Using Nodal Transfer Theorem

- Add the desired number of registers to all input edges and then, by repeated application of the node transfer theorem, systematically move the registers to break the delay of the critical path
- Node transfer theorem to add one level of pipeline registers in a 4-bit RCA
Node transfer theorem applied around node FA0
Node transfer theorem applied around FA1
RCA Example

- Adding three stages of pipeline registers by applying the node delay transfer theorem on
 - Original DFG, around
 - FA0
 - FA1
 - FA2
Delay Transfer Theorem

- Adding three stages of pipeline registers by applying the node delay transfer theorem on
Delay Transfer across FA0
Delay Transfer Across FA1
Delay Transfer across FA2
Pipelining Optimized DFG
Direct-form FIR filter with three coefficients
Optimized implementation of 3-coefficient direct-form FIR filter
Possible locations to apply cut-set pipelining to a compression tree
Pipelining a 5-bit conditional sum adder (CSA)
Retiming to minimize the number of registers
Peripheral retiming

- All the registers are moved to the periphery of the design either at the input or output of the logic.
- The combinational logic is then globally optimized and the registers are retimed into the optimized logic for best timing.
The original design.
Moving registers to the periphery
Retiming and optimization
Shannon decomposition removing the slowest input x_0 to f_0 and duplicating the logic in f_0 with 0 and 1 fixed input values for x_0.

In the diagram:
- x_1, x_2, and x_3 are inputs.
- f_0 and f_1 are functions.
- y is the output.

The diagram shows the process of Shannon decomposition where x_0 is removed from f_0 and duplicated with fixed values 0 and 1.
The design is then retimed for effective timing
Iteration and Iteration Period

- The iteration period is the time required for execution of one iteration of the algorithm.
Critical Path and Critical Path Delay

- The critical path of a DFG is defined as the path with the longest computation time delay among all the paths that contain zero registers.
- The computation time delay in the path is called the critical path delay of the DFG.
Loop and Loop Bound

- A loop is defined as a directed path that begins and ends at the same node.
- The loop bound of the ith loop is defined as $\frac{Ti}{Di}$, where Ti is the loop computation time and Di is the number of delays in the loop.
A critical loop of a DFG is defined as the loop with maximum loop bound. The iteration period of a critical loop is called the iteration period bound (IPB)

\[IPB = \max_{\forall L_i} \left\{ \frac{T_i}{D_i} \right\} \]
Dataflow graph with three loops

- **Mul 2 tu**
- **Add 1 tu**
- **The critical loop L2 has maximum loop bound of 3.5 tu**
- **Critical path is 7 tu**

\[N_4 \rightarrow N_5 \rightarrow N_6 \rightarrow N_3 \rightarrow N_1 \]

IPB is the best achievable critical path for recursive designs

\[
LB_1 = \frac{T_1}{D_1} = \frac{(1 + 1 + 2 + 1)}{2} = 2.5
\]

\[
LB_2 = \frac{T_2}{D_2} = \frac{(1 + 2 + 1 + 2 + 1)}{2} = 3.5
\]

\[
LB_3 = \frac{T_3}{D_3} = \frac{(1 + 2 + 1)}{2} = 2
\]
Retimed DFG with critical path of 4 timing units and IPB of 3.5 timing units

- Apply nodal transfer theorem across N5
DFG with critical path delay\(=\text{IPB}=3.5\)

- Can still do better
- Requires pipelining multiplier

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan
Achieving IPB

- Let Mul and Add takes 1 tu each
- IPB is $2/2 = 1$ tu
- Critical path = 2 tu
- Can be retimed to get IPB
 - Cut-set retiming
Retimed DFG using cut-set retiming

\[ay[n-2] + x[n] = y[n] \]
Critical path delay of a first-order IIR filter

\[ay[n-1] + x[n] = y[n] \]
Retiming with one register in a loop will result in the same critical path

\[ay[n-1] + x[n] = y[n] \]
Recursive DFG

- Let $\text{Mul} = 2$ tu and $\text{Add} = 1$ tu
- $\text{IPB} = 4$ tu
- Critical path $= 5$ tu
Two cut-sets are applied on the DFG.
The registers are moved by applying feedback cut-set retiming
Beyond IPB
Improving beyond IPB

- Each node takes 2 tu
- IPB of 8 timing units
Using Shannon decomposition the IPB is reduced to around 4 timing units
C-Slow Retiming

- Replaces every register in a dataflow graph with C registers.
- Retimed these registers to reduce the critical path delay.
- The resultant design can operate on C distinct streams of data
Retiming

- 2-Slow design working on two streams of data
- 2 Registers are retimed for better timing
Original DFG with multiple nodes and few registers and large critical path.
2-Slow Design
The DFG partitioned into two equal sets of logic where all the three nodes can be reused in a time-multiplexed design.
C-slow for an Instruction Set Processor

- Any processor can be C-slowed and then can run C parallel threads
Lookahead

- Lookahead actually reduces the iteration period bound
 - Pipelining and C-slow do not reduce the iteration period bound

Design Flow

- Step 1: Check if sample period is satisfied by IPB
- Step 2: Lookahead can be used to reduce IPB
- Step 3: Retiming can then be used to reduce the iteration period to that of the IPB
What is Lookahead?

Current iteration: \(y[n] = ay[n-1] + x[n] \)

Previous iteration: \(y[n-1] = ay[n-2] + x[n-1] \)

Rewriting the current iteration

\[y[n] = a^2 y[n-2] + ax[n-1] + x[n] \]
Look-ahead Transformation for IIR filters
Lookahead Factor

- By an order of 3

\[y[n] = a^3 y[n-3] + a^2 x[n-2] + ax[n-1] + x[n] \]

- By an order of M

\[y[n] = a^M y[n-M] + \sum_{i=0}^{M-1} a^i x[n-i] \]
Lookahead Transformation

\[H(z) = \frac{1}{1-az^{-1}} = \sum_{i=0}^{M} a^i z^{-i} \]