
Assignment # 3

EC-423 Digital System Design
Submission: 8 Oct 2012

TA

Question 1: Verilog Coding

Design a system which gets a 16-bit signed input on every clock cycle and

keeps accumulating these values in a 32-bit accumulator register. The

design should also provide the following:

• Output flag indicating the overflow and underflow condition of addition operation

• Two 16-bit registers that keep the updated minimum and maximum values every clock

cycle

• A count register that stores the number of cycles it takes the accumulator register to

first overflow or underflow.

a. Draw RTL diagram for the architecture

b. Implement the design RTL Verilog and test it for multiple scenarios

Question 2: Verilog Coding Inference

Draw an RTL diagram for the following Verilog code. Clearly specify the data

widths of all the wires, and show multiplexers, registers, reset and clock

signals.

module rtl_design (input [31:0] x0, input [1:0] sel, input clk,rst_n,

output [31:0] out);

reg [31:0] x1, x2, x3;

reg [31:0] y0, y1;

wire [31:0] out1, out2;

assign out1 = x0 + x1;

assign out2 = x2 + x3

assign out = y0 + y1;

always @(posedge clk or negedge rst_n) begin

 if(!rst_n) begin

 x1 <= 0;

 x2 <= 0;

 x3 <= 0;

 end

 else if (sel==0) begin

 x3 <= x2;

 x2 <= x1;

 x1 <= x0;

 end

 else if (sel == 01) begin

 x3 <= x1;

 x2 <= x0;

 x1 <= x2;

 end

 else begin

 x3 <= x3;

 x2 <= x2;

 x1 <= x0;

 end

end

always @ (posedge clk or negedge rst_n) begin

 if(!rst_n) begin

 y1 <= 0;

 y0 <= 0;

 end

 else begin

 y1 <= out1 + y0;

 y0 <= y1 + out2;

end

 end

endmodule

Question 3: RTL Verilog Coding

Write RTL Verilog Code and stimulus to implement the Multiply Accumulator

(MAC) architecture that implements the following:

��� = � × � + ���

The signals A, B, and Acc are 8, 8, 32-bit wide respectively.

Using the MAC architecture, extend the design to implement the following

opcodes

��� = � × �

��� = � + ���

��� = � + ���

